FINANCIAL STATEMENT FRAUD USING REVISED BENEISH M-SCORE MODEL: EVIDENCE IN BANKING INDONESIA

  • Pupung Purnamasari Universitas Islam Bandung
Keywords: bank, beneish m-score, beneish m-score revised, financial statement fraud, fraud

Abstract

The purpose of this research is to determine the extent of the possibility of fraud in the banking sector in Indonesia. This study involves banks that have gone public on the IDX from 2017 to 2021. This study uses the Beneish model to classify banks as fraudulent and non-fraud. Then, the probit regression model is applied based on the results of the Beneish model to reclassify a bank as fraud or vice versa. The study revealed that the number of banks that were detected as experiencing the possibility of fraud was 41 banks for 5 years using the Beneish M-Score model approach. Then the results of testing using the Beneish M-Score which has been revised according to the characteristics of the banking itself are as many as 56 banks which have indicated that they have experienced fraud for 5 years. This study contributes to the fraud literature by providing evidence that fraud is widespread in the banking sector in Indonesia even though banks have strict regulations

Downloads

Download data is not yet available.

References

Aprilia. (2017). Analisis Pengaruh Fraud Pentagon Terhadap Kecurangan Laporan Keuangan Menggunakan Beneish Model Pada Perusahaan Yang Menerapkan Asean Good Governance Scorecard. 2017, (pp. JURNAL ASET (AKUNTANSI RISET), 9 (1), 2017, 101-132). Bandung.
Awang, Y., & Ismail, S. (2018). Determinants of financial reporting fraud intention among accounting practitioners in the banking sector: Malaysian evidence. International Journal of Ethics and Systems.
Barton, J., & Simko, P. J. (2002). The balance sheet as an earnings management constraint. The accounting review, 77(s-1), 1-27.
Cressey, D. R. (1953). Other people's money; a study of the social psychology of embezzlement.
Crowe, H. (2011) Why the Fraud Triangle is No Longer Enough. IN Horwath, Crowe LLP
Dechow, P. M., Ge, W., Larson, C. R., & Sloan, R. G. (2011). Predicting material accounting misstatements. Contemporary accounting research, 28(1), 17-82.
Flayyih, Z. N. (2011). Empirical Study on the Effect of Adopting the International Financial Reporting Standards (IFRS) on the Quality of Earnings using Beneish Model in a Sample of Banks Listed in the Iraqi Stock Exchange. Studies of Applied Economics, Volume 39-11, November 2021 // ISSN: 1133-3197.
Fraud, A. F. (2020). Eny Kusumawati & Siwi Dwi Kusumaningsari. Proceeding Seminar Nasional & Call For Papers (pp. 361-375). Surakarta: Universitas Muhammadiyah Surakarta.
Hendra Galuh Febrianto, A. I. (2020). Mendeteksi Kecurangan Laporan Keuangan Dengan Analisis Fraud Diamond Dalam Perspektif Islam (Studi Empiris Bank Umum Syariah di Indonesia). Profita: Komunikasi Ilmiah Akuntansi dan Perpajakan, 85-95.
Husein, Umar. 2011. Metode Penelitian Untuk Skripsi dan Tesis Bisnis Edisi 11. Jakarta: PT Raja Grafindo Persada
Jensen, M. &. (1976). Theory of the firm: Manageral Behavior,Agency Cost, and Ownership Structure. Journal of Financial Economics. Vol 3, 305-360.
Kusumosari, Larassanti, & Solikhah, Badingatus. (2021). Analisis Kecurangan Laporan Keuangan Melalui Fraud Hexagon Theory. Fair Value: Jurnal Ilmiah Akuntansi Dan Keuangan, 4(3), 753–767
Liu, W. (2020). How Useful Is It for Banks to Analyze Financial Statements. American Journal of Industrial and Business Management, 1488-1504
Mahama, M. (2015). Detecting Corporate Fraud And Financial Distress Using The Altman and Beneish Model The Case Of Enron Corp. International Journal of Economics, Commerce and Management, Vol. III, Issue 1, Jan 2015
Margaretha Lionardi, S. S. (2022). Pendeteksian Kemungkinan Terjadinya Fraudulent Financial Statement menggunakan Fraud Hexagon. Moneter: Jurnal Akuntansi dan Keuangan, 29-38.
Mark warshavsky. ( 2012 ). Analysis Earning Quality as a Financial Forensic Tool. In G. M. Lehrer, forensics/fraud - earnings Quality and the Beneish Model (pp. 1-20). Newyork: fVLe issue 39
Martantya, D. (2013). Pendeteksian Kecurangan Laporan Keuangan Melalui Faktor Risiko Tekanan Dan Peluang (Studi Kasus pada Perusahaan yang Mendapat Sanksi dari Bapepam. Diponegoro Journal Of Accounting, Volume 2, Nomor 2, Tahun 2013, Halaman 1-12.
Nyakarimi, S. (2022). Probable earning manipulation and fraud in banking sector. Empirical study from East Africa. Cogent Economics & Finance, 10(1), 2083477.
PWC. (2020). Basic understanding of a company’s Financial Statements. Price Water Cooper.
Sagala, S. G. (2021). Pengaruh Fraud Hexagon Model Terhadap Fraudulent Laporan Keuangan pada Perusahaan Sub Sektor Makanan dan Minuman yang Terdaftar di BEI Tahun 2016-2019. Jurnal Akuntansi.13(2), 245-259
Sekaran, Uma dan Bougie, Roger. 2016. Research Methods For Business: A Skill Building Approach, 7th Edition. New Jersey: Wiley
Skousen, C. J. (2008). Detecting and Predicting Financial Statement Fraud: The Effectiveness of the Fraud Triangle and SAS No. 99. SSRN Electronic Journal
Sugiyono. (2017). Metode Penelitian Kuantitatif, Kualitatif, dan R&D. Bandung : Alfabeta, CV
Vousinas, G. L. (2019). Advancing theory of fraud: The S.C.O.R.E Model. Journal of Financial Crime, 372-381.
Wolfe, D. T. (2004). The Fraud Diamond : Considering the Four Elements of Fraud: Certified Public Accountant. The CPA Journal, 38-42.
Published
2023-04-04
How to Cite
Purnamasari, P. (2023). FINANCIAL STATEMENT FRAUD USING REVISED BENEISH M-SCORE MODEL: EVIDENCE IN BANKING INDONESIA. ACCRUALS (Accounting Research Journal of Sutaatmadja), 7(01). https://doi.org/10.35310/accruals.v7i01.1035